হাতে কলমে মেশিন লার্নিং
  • হাতেকলমে মেশিন লার্নিং
  • উৎসর্গ
  • প্রথম পাতা
  • মুখবন্ধ
  • কৃতজ্ঞতা
  • কাদের জন্য বইটা?
  • কাদের জন্য নয়
  • কিভাবে পড়বেন বইটা?
  • পর্ব ১: পাল্টে যাবার ঘটনা
    • ১.১. সিডিসি’র ওয়ার্নিং
    • ১.২. ইন্টারকানেকশন কস্ট মডেলিং
    • ১.৩. মানুষের পাশে ডাটা
    • ১.৪. গুগল ফটোজ, টেক্সট টু স্পিচ
    • ১.৫. সরকারি ওপেন ডাটা
    • ১.৬ প্রাইভেট সেক্টর + পাবলিক সেক্টর (ডাটা শেয়ারিং)
    • ১.৭. আর্টিফিসিয়াল ইন্টেলিজেন্স - মেশিন লার্নিংএর প্রসার
    • ১.৮. মেশিন লার্নিং ব্যবহারে এগিয়ে যে ইন্ডাস্ট্রিগুলো
  • পর্ব ২: ডাটা থেকে ভবিষ্যৎ দেখার ধারণা
    • ২.১. মেশিন লার্নিং হ্যাক
    • ২.২. ভবিষ্যৎ দেখার ধারণা + ডাটার গল্প বলার ক্ষমতা
    • ২.৩. মৃত্যু অ্যালগরিদম
    • ২.৪. দেশের নীতিনির্ধারণী ড্যাশবোর্ড
  • পর্ব ৩: মেশিন লার্নিং কি? (৩০ মিনিট)
    • ৩.১. মেশিন লার্নিং জিনিসটা কি?
    • ৩.২. কেন দরকার মেশিন লার্নিং?
    • ৩.৩. মেশিন লার্নিং এর কিছু ভাগ
    • ৩.৪. শুরুর ধারণা - ডাটা নিয়ে
    • ৩.৫. ডাটার তত্ব আর তার প্রসেস
    • ৩.৬. কিভাবে শিখবেন?
  • পর্ব ৪: ক্যাগল প্রতিযোগিতা (৪ সপ্তাহ-৬ সপ্তাহ)
    • ৪.১. ‘ক্যাগল’ কি? আর দরকারই বা কেন?
    • ৪.২. কি করতে হবে ক্যাগলে?
    • ৪.৩. থিওরি বাদ, কেন প্রজেক্ট দিয়ে শুরু?
    • ৪.৪. কেন শুরুতেই ‘আর’ প্রোগ্রামিং এনভায়রনমেন্ট?
    • ৪.৫. মেশিন লার্নিং কমিউনিটি
    • ৪.৬. ক্যাগল কার্নাল এবং অনলাইন হোস্টেড স্ক্রিপ্ট
  • পর্ব ৫: "আর" এনভায়রনমেন্ট
    • ৫.১. "আর" + "আর" ষ্টুডিও
    • ৫.২. "আর" ষ্টুডিওর কিছু খুঁটিনাটি
    • ৫.৩. প্রজেক্ট টাইটানিক + 'আর' ষ্টুডিও
    • ৫.৪. প্রজেক্টের গিটহাব স্ক্রিপ্ট
  • পর্ব ৬: প্রজেক্ট টাইটানিক: বিপর্যয়ে মেশিন লার্নিং
    • ৬.১. টাইটানিকের গল্প
    • ৬.২. কেন প্রজেক্ট" টাইটানিক "? ডাটা কোথায়?
    • ৬.৩. ‘ট্রেনিং’ আর ‘টেস্ট’ ডাটা সেট
    • ৬.৪. ক্যাগলের কোন কোন কার্নাল?
    • ৬.৫. "আর" স্টুডিওতে ডাটা লোড
    • ৬.৬. মেন্যু দিয়ে নাকি স্ক্রিপ্ট ভালো ?
  • পর্ব ৭: প্রেডিকশন
    • ৭.১. প্রথম প্রেডিকশন
    • ৭.২. ডাটা ভিজ্যুয়ালাইজেশন
    • ৭.৩. দ্বিতীয় প্রেডিকশন
    • ৭.৪. তৃতীয় প্রেডিকশন
    • ৭.৫. ডিসিশন ট্রি
    • ৭.৬. চতুর্থ প্রেডিকশন (মেশিন লার্নিং)
    • ৭.৭. পঞ্চম প্রেডিকশন (ফিচার ইঞ্জিনিয়ারিং)
    • ৭.৮. ডাটা প্রি-প্রসেসিং, ডাটা ক্লিনিং এবং ষষ্ঠ প্রেডিকশন
    • ৭.৯. সপ্তম প্রেডিকশন (র‌্যান্ডম ফরেস্ট)
  • পর্ব ৮: কি আছে সামনে?
    • ৮.১. কি শিখলাম আমরা?
    • ৮.২. কোথায় যাচ্ছি এর পর?
    • ৮.৩. সামনের বই
    • ৮.৪. যোগাযোগের মাধ্যম
  • পর্ব ৯: পাইথনে টাইটানিক প্রজেক্ট
    • জুপিটারে প্রজেক্ট টাইটানিক
  • একটা ট্রেনিং প্রোগ্রাম
Powered by GitBook
On this page
  • পর্ব ৪
  • ক্যাগল প্রতিযোগিতা (৪ সপ্তাহ-৬ সপ্তাহ)

Was this helpful?

পর্ব ৪: ক্যাগল প্রতিযোগিতা (৪ সপ্তাহ-৬ সপ্তাহ)

*

*

*

Without big data analytics, companies are blind and deaf, wandering out onto the web like deer on a freeway.

– Geoffrey Moore

পর্ব ৪

ক্যাগল প্রতিযোগিতা (৪ সপ্তাহ-৬ সপ্তাহ)

Previous৩.৬. কিভাবে শিখবেন?Next৪.১. ‘ক্যাগল’ কি? আর দরকারই বা কেন?

Last updated 5 years ago

Was this helpful?